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Methods of identifying the thermal diffusivity and thermal activity without 
loss of integrity and with introduction into the experimental object are 
considered. Identification schemes based on electrical models with tunable 
parameters are presented. 

Systemic and structural analysis of processes of nonsteady heat transfer [i] forms 
the theoretical basis of various identification methods of constructing measuring and infor- 
mation systemsand, in particular, identification systems for the parameters of thermophy- 
sical objects and thermal perturbations. According to [i], the space-time formation of a 
temperature field and heat fluxes at the boundary of a body and inside it is shown using a 
structural scheme consisting of a set of elements (blocks) with definite interrelations. 
Elements of the structural scheme are described by system operators (transfer functions) 
determining the rule governing the transformation of input perturbations into the output 
function; the inputs and outputs of the blocks are observable, and have clear physical signi- 
ficance. A correctly formulated structural scheme is essentially an informative mathema- 
tical model of the given process and provides the basis for the construction of various 
identification schemes. 

The principles of construction of schemes for identifying the thermal-activity coeffi- 
cients b and thermal diffusivity a are considered for the example of a structural scheme 
of heat transfer in a semiinfinite (in thermal terms) body, at the surface of which there 
acts a circular heat source of specific power q(~) (Fig. la). 

Heat transfer in the body is described by a system of differential equations 
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Fig. 1. Structural schemes for 
identifying the coefficients b 
and a of the thermal object: a) 
thermal model of the object with 
ideal insulation (I); b, c) for- 
mation of temperature fields in- 
side the object and at its sur- 
face; d) identification of coef- 
ficients b and a. 

The solution for the L transform of the excess temperature 01(0, x, p) [2]: 

As r 0 

[, (x i i @a (0, x, p) = $ (p) b ]/------~ exp - -  - -  -]/p exp -1/~ 
V a  , b V~ ] / a  " 

~, the expression is simplified 

[ 0xp( x 
~, (0, x, p) = ~ (p) o V---F V~  ] / ?  

At the surface of the body (x = 0), the excess temperature is 

@1 (0, O, p ) =  ~(p) b ] / 7  b 1/-----7 exp 3 /~  . 

The s t r u c t u r a l  s chemes  o f  t e m p e r a t u r e - f i e l d  f o r m a t i o n  a l o n g  t h e  x a x i s  0 ( 0 ,  x ,  p )  a s  
r 0 + ~ and a t  t h e  s u r f a c e  o f  t h e  body 0 ( 0 ,  O, p)  ( r  0 ~ ~)  a r e  shown i n  F i g .  l b ,  c ,  r e s p e c -  
t i v e l y .  

The mathematical model of temperature formation is represented by the operators i/b/p 
and exp [-(x//a)/p] with the unknown coefficients b and a. These coefficients may be de- 
termined by calculation from the known values of the L t~ansforms of the temperatures 0(0, 
0, p) and @(0, x, p) and the input perturbation q(p) [i] 

1 q (p) px 2 
- -  ; a =  

b =  l / 7 0 ( O ,  0, p) lnZ~O(O,x,p)/O(O,O,p)] 
I n  p r a c t i c e ,  t e m p e r a t u r e  v a r i a t i o n  o c c u r s  o v e r  a t i m e  r e g i o n  w i t h  some e r r o r  • 6,  and 

t h e  L mapp ing  i n c l u d e s  an a d d i t i o n a l  e r r o r  due t o  t h e  f i n i t e  m e a s u r e m e n t  i n t e r v a l  and a p -  
p r o x i m a t e  c a l c u l a t i o n  o f  t h e  L a p l a c e  t r a n s f o r m a t i o n .  T h e r e f o r e ,  t h e  t h e o r e t i c a l  v a l u e s  o f  
t h e  c o e f f i c i e n t s  b and a do n o t  s a t i s f y  t h e  r e q u i r e m e n t  o f  d e s i r a b l e  a c c u r a c y .  

The coefficients b and ~ may be determined using an identification system based on mo- 
dels with tunable parameters, the controlling perturbations of which are the values of the 
errors e b and e a. The law of parameter tuning of the model is formed by program devices 
(PD) ensuring the minimization of the error [3]. The structural scheme of the identification 
system for coefficients b and ~ is shown in Fig. id. 
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Fig. 2. Diagram of distributed RC structure and its 
discrete analog: a) RC structu__re; b) equivalent quadru- 
pole; c) discrete analog of RC structure. 

Models with tunable parameters b and ! are described by the transfer functions i/b~pp 
and exp [-(x//a)/p], respectively, which are not expressed by ordinary differential equations. 
Therefore, they cannot be synthesized on the basis of electrical circuits with point para- 
meters. The procedure for model synthesis is based on electrical circuits with distributed 
parameters, using the analogy of thermal and electrical processes occurring in a line with 
distributed parameters and described by a system of partial differential equations [4] 

OU (x, l) = Roi (x, t )+ Lo Oi (x, t) . 
Ox at 

ai (x, t___~) = aoU (x, 0 + Co ou (x. 0 
Ox OZ 

where R 0, G O , L 0, C O are the line parameters. 

Differentiating the first equation with respect to x and substituting the second into 
the result with G o = L 0 = 0, it is found that 

OU (x, 0 _ I O~U (x, t) ( 1 )  

Ot RoCo Ox 2 

E q u a t i o n  (1)  i s  s i m i l a r  in  form to  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  

O0 (x, ~) a2~ (x, ~) 
- -  - -  a 

O~ Ox 2 

D i f f e r e n t i a l  Eq. (1)  d e s c r i b e s  t h e  s p a c e - t i m e  f o r m a t i o n  o f  t h e  p o t e n t i a l  and c u r r e n t  in  
a distributed RE structure (RC structure) characterized by a longitudinal resistance R o 
(m/m) and a linear capacity C o (F/m). A diagram of the EC structure is shown in Fig. 2a. 

The potential and current in the cross section__xx, 0(x, p) and I(x, p),_are related to 
the potential and current at the beginning of the RC structure, 01(p) and It(p), as follows 
[51 

(x, p) = U~ (p) ch yx - -  "[1 (p) z w sh yx; 

l(x, p) := l, (p) ch ?x - -  U!.(P) sh ?x. 
2w 

(2) 

485 



TABLE i. Table of 
and ha(t) 

I �9 

0 " ~  

0,001 
0,001 
0,001 
O,OOl 
0,001 
0,01 
0,01 
0,01 
O,Ol 
0,01 
O,l 
O,1 
0,1 
0,I 

[ , gl 
~ ~ u,,~[ 

0,4767 
1,9337 
4,3779 
7,8117 
2,2365 

1 0,4296 
1,7969 
4,1237 
7,4178 
1,6835 
0,3066 
1,4191 
3,4040 
6,2854 

Values of the Transition Functions h~(t) 

o= i 
.I,.J ~ ' ~  

[ 0,47671 
1,9337 [ 
4,3779 ] 
7,8117 [ 
2,2365 I 
0,4296 
1,7969 
4, 1237 
7,4178 
1,6835 
O, 3062 [ 
1,4187 [ 
3,4036 I 
6,28501 

0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,131 
0,028 
0,011 
0,006 

0,1 
1,0 
1,0 
1,0 
1,0 
1,0 
1,0 
1,O 
1,O 
1,0 
1,O 
1,0 
1,0 

5 10,0774 
1 0,0967i 
2 0,6447i 
3 1,8044 
4 3,6452] 
5 6,2086 
6 9,52321 
7 13,6104 
8 18,4865 
9 24,1650 

10 30,6571 
ll 37,9721 
12 46,1182 

10,0770 
0,0596 
0,6063 
1,7654 
3,60581 
6,1690 
9,4835 

13,5705 
18,4465 
24,1249 
30,6169 
37,9319 
46,0779 

0,004 

5,950 
2,159 
1,078 
O, 637 
0,417 
O, 293 
0,216 
O, 165 
0,13! 
0,106 
0,087 

For an R--C structure of finite length s the relation between the input and output values 
is 

U1 (p) = U,: (p) ch yl-/- ~ (p) zwsh y/; 

(p)= U~ (p____~) sh yl + ~ (p) ch yl. 
z 

W 

With a matched load Zlo = Zw, there are no reflected waves in the RC structure and its 
input resistance is equal to the wave resistance 

U1 (p) ZloCh ~I + ~, shyl 1 / -  Ro 
Zin--  ~ (p)  - -  Zlo/Z w s h ? l + c h y / =  V p - C o  " 

The transfer function with respect to the potential of a matched RC structure of length 
s is analogous to the transfer function of a thermal element with x//~ = /R-~o~0s 

V/(p) - :  U(x,_ p) _ ch y1 - -  sh yt = exp ( - -  ]/pRoCol). 
gl  (p) 

A distributed RC structure of length s may be synthesized in a definite frequency re- 
gion using circuits with point parameters described by o___rdinary differential equations. 
To this end, the analogy between the equations of the RC structure and the equations of a 
quadrupole in the A form is used, and the transfer matrix of a quadrupole is written 

[A]= ~|IZw shyl chyl j : [  ~--sh]/pRC ch]/p-~- 

With t h e  aim o f  s i m p l i f y i n g  t h e  r e a l i z a t i o n ,  sh~pRC and chJpRC a r e  expanded  i n  s e r i e s  
and ,  l i m i t i n g  t h e  e x p a n s i o n s  t o  t h e  f i r s t  t e r m s ,  t h e  a p p r o x i m a t e  t r a n s f e r  A m a t r i x  o f  a 
quadrupole is written 

[A~p= A+ pR___qC R 1 2 

pC 1 + p_~u_ 
z 

When RC ~ i, the relative error of the expansion is no greater than 0.1%; therefore, 
[A] = [A]ap. 

The transfer function of a matched quadrupole with the matrix [A] is 
~ (p) ] Z ~l 0 1 

AZlo-~- B I~--~/pRC -4;- pRC -- eXp(-- ~/P--~)IRC~" 
2 

The s y n t h e s i s  o f  a q u a d r u p o l e  w i t h  t h e  m a t r i x  [A]ap i s  b a s e d  on d i s c r e t e  co m p o n en t s ,  
u s i n g  t h e  s y m m e t r i c  r e p l a c e m e n t  T scheme in  F i g .  2b. 

The parameters ZiT and Z3T are determined: 
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Fig. 3. I d e n t i f i c a t i o n  scheme for  the c o e f f i c i e n t s  a and 
b: a) with i n t roduc t ion  into  the exper imental  ob jec t ;  b) 
nondes t ruc t ive  monitoring.  

1 + pRO 1 

z l r  = pC = --U; zar = - '~ " 

The replacement scheme of the RC structure in the form of a cascade system of quadru- 
poles is shown in Fig. 2c. 

The problem of synthesizing a model with a transfer function exp (-kJp) and tunable pa- 
rameter k based on the use of distributed RC structures is reduced to isolating the basic 
(unchanging) part of the model, ensuring the time formation of the output signal in the spe- 
cified range of variation of k and the tuning block of the parameter k. To isolate the 
unchanging part of the model, the transfer function exp (-kJp) is expanded in power series 

exp (-~ V~-)-- ~ - k V ~ +  (k V~)~2~ (k-V~s~ + . . . .  .,=o~'$ (-1)"' (/~ Yh-) '~ ,~  (3) 

Retaining a sufficient number of terms in the expansion, a model with any degree of 
accuracy may be synthesized. Retaining four terms of the expansion, Eq. (3) takes the form 

_ _  _ k 0~ t~3 exp (--k V ~ )  1 k + _  (4 )  
P~ pS p -I/p 2p 6 -I/p" 

Analysis of the error of the expansion in Eq. (4) is undertaken in the time region with 
a unit step perturbation at the input of the model. The relative error of the expansion is 

Ih~ (t) --h~ (t)f 100%, 
Ih2 (t)l 
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Fig. 4. Diagrams of elements: a) with the irrational transfer 
function I//p; b) with a controllable transfer coefficient. 

where 

I z 4k t3/2 + , k  ~ 1 k 3/~ 
- -  l - -  t i l  2, 

h, (t) = 2 3 ]/-~ 2 3 ] / -~ 

k ~ ke -~14t  5 t31~ + t~l~ 
k + - ~ -  t + ~ -V~ 6 12 h2 (t) ---- erfc 2 ] /--~ 

Calculations of the relative error of the expansion in Eq. (4) with various values of k 
are performed on a computer, with the results in Table i. Analysis of the calculations shows 
that, to ensure an accuracy of 0.1%, the range of variation in k must be within the limits 
0 < k < 1 (t > i0 sec). 

A structural diagram of the model described by the series in Eq. (4) is shown in Fig. 3a 
(model ~). The unchanging part of the model is based on typical integrating elements with 
the transfer function i/p and special semiintegrating elements with transfer function i//p. 
The element with the irrational transfer function i/Jp is described by partial differential 
equations and therefore is constructed using a distributed RC structure. The sch___eme of the 
semiintegrating element based on an ideal operational amplifier with a matched RC structure 
in the feedback circuit is shown in Fig. 4a. The transfer function of the element is [6] 

zw  VRo/pCo _ = r R~ 

The element with transfer function i/p was described in [3]. The changing part of the 
model (tuning block-for the parameter k) is based on noninertial elements with a control- 
lable transfer function K and summation and subtraction elements. The scheme of the non- 
inertial element based on an ideal operative amplifier with a field transistor at the in- 
put is shown in Fig. 4b. The transfer function of the element is 

K (p) = 

where Rss is the sink-source resistance of the field transistor. The sunanation and subtrac- 
tion elements were described in [7]. 

The identification scheme for the coefficients a and b with the introduction into the 
experimental object is shown in Fig. 3a. Step functions of the heat flux fed to the experi- 
mental object and the potential are formed on the basis of the identification signal by 
the unit forming the input perturbations (F). The signal from thermocouple T1 is amplified 
and compared with the output signal of model b. In accordance with the error eb, the prog- 
ram device develops a controlling perturbation at element Kb" The tuning algorithm for K b 
ensuring minimization of the error was described in [8]. The signal from thermocouple T2 
is transformed (filtered) and compared with the output signal from model ~. To ensure the 
required accuracy, the range of variation must be within the limits 0 < C a ~ i; therefore, 
x 0 is chosen from the condition x0/~ j i. The numerical value of the coefficient ~ for 
most nonmetallic materials is in the range (0.5-50)'10-7; therefore, for these materials, 
x0 ! ( 0"2-2)'I0-3 m. 

A diagram of the nondestructive method of identifying the coefficients a and b (at the 
surface of the given material) is shown in Fig. 3b. The identification process has two sta- 
ges. In the first stage, the coefficient b is found; then, with known b, a is identified. 
The time to identify the coefficient b is determined from the condition t b J r0='103 , see. 
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NOTATION 

T(r, x, ~), temperatur~ at any point of the experimental object; r, x, current coordi- 
nates of object; ~, time; @(r, x, ~) = T(r, x, ~) - T o , excess temperature of experimental 
object; q(T), heat-flux density; U(x, t), potential in cross section x of long line; i(x, t), 
current in cross section x of long line; x, current coordinate of long line; t, time;__~, 
constant of propagation; p, Laplace-transformation parameter; z w, wave resistance of RC 
structure; Zlo, load resistance; A, B, matrix elements of quadrupole; hi(t), h2(t), transi- 
tion characteristics of the models; k, tunable coefficient; erfc x = 1 - erf x; erf x = 2/ 

X 

/~ S e-X2dx, Gaussian error function. 
0 
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FORMULAS FOR THE DISCREPANCY GRADIENT IN THE ITERATIVE SOLUTION 

OF INVERSE HEAT-CONDUCTION PROBLEMS. II. DETERMINING THE 

GRADIENT IN TERMS OF A CONJUGATE VARIABLE 

O. M. Alifanov and S. V. Rumyantsev UDC 536.24 

The construction of the functional-deficiency gradient is considered for the 
iterative solution of inverse problems in the case of an equation of para- 
bolic type. Nonlinear formulations of the problem are considered in the gen- 
eral case. 

In the first part of this report [i], formulas were obtained for the discrepancy gra- 
dient in terms of the Green's function of the corresponding boundary problem. A more gen- 
eral method of finding the gradient is based on solving the conjugate boundary problem [2, 
3]. Below, an approach to deriving the conditions of this problem and formulas for the 
discrepancy gradient allowing a rigorous basis for the results obtained to be established 
is outlined. 

Suppose that in a region with mobile boundaries Q~ = {XI(~) < x < X2(T), 0 < �9 < ~m} 
a quasilinear parabolic equation is specified 

CT~ = (ET~)x + KT~ + g ( 1 ) 

The i n i t i a l  and boundary c o n d i t i o n s  f o r  Eq. (1) are  

T(~, 0) = ~(x), (2)  

(3) 
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